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A computational approach to describing speechreading performance is illus-
trated using a database obtained from 139 subjects with normal hearing who
viewed videodisc recordings of the CID Everyday Sentences (Davis & Silver-
man, 1970) spoken by a male and a female talker. Four methods of scoring
were employed: sentences correct, words correct, phoncmes correct, and a
measure of visual distance between the stimulus and response. The latter two
measures were based on a sequence comparator that aligns stimulus and re-
sponse phonemes to permit phonemic scoring of sentences (Bemstein, Demo-
rest, & Eberhardt, 1991). New techniques for describing normative perfor-
mance on individual sentences are presented (sentence histograms, response
distributions, and a response uncertainty function), and the four measures of
subjects’ performance are compared. The usefulness of these descriptive
methods for suggesting hypotheses about perceptual and cognitive processes in
speechreading is also illustrated.

Speechreading has long been a topic of central importance in rehabilitative au-
diology, but it is gaining recognition as a mode of speech perception used by
those with normal hearing as well. Indeed, many cognitive and speech scientists
view speech perception as an inherently audiovisual process (Dodd & Campbell,
1987; Massaro, 1987). The long-term goals of our research program are to
model perceptual and cognitive processes in speechreading and to characterize
the nature and extent of individual differences in those processes. One underly-
ing assumption is that detailed description of performance on different stimulus
materials and careful examination of the responses of individual subjects can
provide clues about these processes. A second assumption is that important
information can be obtained by systematic analysis both of correct responses
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and of the kinds of errors that observers make.

In the first phase of this research speechreading responses to isolated sentences
were obtained from individuals with normal hearing (Demorest & Bernstein, in
press). Sentences were chosen as stimuli because they represent a natural unit
of everyday communication and because they can be described both in terms of
their visual phonetic content and in terms of units such as syllables, words, or
phrases. Thus, it is possible to describe the data at several levels of analysis
and thereby formulate hypotheses about the interrelationships among them.

Speechreading of isolated sentences is usually described in terms of words
correct or key words correct. However, it is also apparent from inspection of
responses that many incorrect words and word fragments are visually similar to
portions of the stimulus sentence. If we wish to describe stimulus-response
correspondences and to quantify the visual similarity of the stimulus sentence
and the response, it is necessary to solve an important methodological problem:
alignment of the elements of the stimulus with those of the response.

Consider the stimulus and response sentences shown in Example 1:

Stimulus: Why should 1 get up so early in the morning?
Response: Watch what I'm doing in the morning! 08

Because English orthography is irregular and because the language contains
homophones that are spelled differently, the sentences are first transcribed into
a phonetic notation. For this purpose we have used the notational system incor-
porated in DECtalk (Version 2.0), a computerized text-to-speech synthesizer.
The notational system is shown in Table 1, which is adapted from the DECtalk
DTCOI programmer reference manual (Educational Services Department, Digital
Equipment Corporation, 1984). In transcribed form these two sequences be-
come:

Stimulus: wA SUd A gEt "p so Rli In Dx momIG
Response: waC wxt AM dulG In Dx moml!G 2)

Three words are correct (in the morning or /In Dx mornlG/), but several
phonemes in incorrect words appear by inspection to possibly be correct also.
For example the /w/ in why (/wA/) may correspond perceptually to the /w/ in
watch (/waC/) and the /t/ in get (/gEV) may correspond to the /t/ in what (/wxt/).
Moreover, it seems plausible that the /p/ in up (/"p/) might correspond to the
homophenous /m/ in I'm (/Am/).

In order to study such stimulus-response correspondences systematically, it is
necessary to have an objective procedure for aligning elements of the stimulus
and response. The alignment procedure should also provide for omission (i.e.,
deletion) of stimulus elements and insertion of elements in the response that
have no apparent correspondence with stimulus elements. Given the large
number of errors that occur in speechreading, the most appropriate alignment of
the stimulus and response is difficult to discern. What is needed is an algorithm
(i.e., a computational procedure) for obtaining stimulus-response alignments.
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Table 1
DECtalk Single-Character Notational System

Symbol Example Symbol Example Symbol Example

a Bob | kisses S shin

@ bat J gin t test

A bite k ken T thin

b bet 1 let u lute

c bought L bottle U book

C chin m met - but

d debt M ransom v vest

D this n net w wet

e bake N button w bout

E bet o boat X about

f fin (6] boy y yet

g guess P pet Y cute

G sing Q Latin z 200

h head T red Z azure

i beat R bird - (silence)
1 bit s sit

Note. From DECtalk DTCO1 Programmer Reference Manual (Table B-1) by Educational Services
Department, Digital Equipment Corporation, 1984, Maynard, MA: Author. Copyright 1984 by
Digital Equipment Corportation; all rights reserved. Adapted by permission.

The criteria incorporated in the algorithm should produce alignments that have
a high degree of face validity and they should reflect the visual confusability of
articulatory movements.

During the past few years we have developed and pilot tested a computerized
sequence comparison system that produces alignments of stimulus and response
phonemes for speechread sentences (Bernstein, Demorest, & Eberhardt, 1991).
It is an application of algorithms presented by Kruskal and Sankoff (1983) that
has been adapted to reflect phenomena in speechreading. The comparator
examines all possible alignments of a phonetically transcribed stimulus sentence
and a subject’s transcribed response. Because it is assumed that visually similar
stimulus and response elements should be aligned, the comparator selects the
alignment for which the overall visual similarity of the stimulus and response is
maximized. Information about visual similarity of phonemes is provided to the
comparator in the form of a matrix of visual distances. The greater the distance
between two phonemes, the less similar they are. The matrix of distances used
by the comparator was based on multidimensional scaling of nonsense syllable
confusions (for details, see Bernstein et al., 1991).

To illustrate, the comparator produced the following alignment for Example 1:

Stimulus: wA SUd A gEt "p so Rli In Dx mom|G
Response: wa C—- — wxt Am du |G- In Dx momIG 3)
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The computational algorithm successfully aligned correct phonemes and
phonemes whose visual similarity is high. In addition to aligning the phonemes
mentioned above that appeared to correspond by inspection, it also aligned the
/A/ in why with the /a/ in watch, the /S/ in should with the /C/ in watch, and
the /s/ in so with the /d/ in do, reflecting the low visual distance between these
pairs. One result that was not anticipated was the alignment of /w/ in what with
the visually distant /g/ in get. However, this alignment illustrates a characteristic
of the sequence comparator: The criterion for selecting an alignment does not
guarantee that every phoneme is aligned only with a perceptually similar one,
but rather, that across the entire sentence the visual distance is minimized.

If we accept this alignment as a description of stimulus-response correspond-
ence, it is possible to operationally define additional measures of performance.
For example, there are 12 phonemes correct, 10 phoneme substitution errors (or
“confusions”), and 4 phoneme deletions. Each of these measures can be divided
by the number of phonemes in the stimulus sentence or in the response to yield
relative indices of performance. It is also possible to characterize the overall
visual similarity of the stimulus and response using the metric in the distance
matrix.

The sequence comparator has been applied to a corpus of speechread sentences
obtained from observers with normal hearing. The purposes of this article are
twofold: (a) to illustrate the kinds of description that are made possible by a
computational approach to the study of speechreading and (b) to compare four
measures of speechreading performance applied to the same data: sentences cor-
rect, words correct, phonemes correct, and overall visual distance between the
stimulus and response.

METHOD
Database

The primary database for these analyses was obtained by Demorest and Bern-
stein (in press). It contains typewritten responses of 104 normal-hearing subjects
who viewed videodisc recordings (Bernstein & Eberhardt, 1986) of the 100 CID
Everyday Sentences (Davis & Silverman, 1970), spoken by a male and a female
talker. Data obtained with the same experimental procedures were also available
for an additional 35 subjects, most of whom had participated in laboratory studies
of vibrotactile supplements to speechreading (Bernstein, Eberhardt, & Demorest,
1989; Eberhardt, Bernstein, Demorest, & Goldstein, 1990). Twenty-five of
these subjects viewed the male talker only.

Transcription

Subjects’ responses were reviewed for typing errors, spelling errors, and con-
sistent use of punctuation and contractions (as reported in Demorest & Bernstein,
in press). Stimulus sentences and subjects’ responses were then transcribed using
the text-to-speech synthesizer DECtalk (Version 2.0). The procedure was mon-
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itored by a research assistant to insure appropriate processing of word fragments,
numerals, isolated punctuation, and other potential transcription problems.

Sequence Comparator

Subjects’ responses were submitted to the sequence comparator described by
Bernstein et al. (1991). Output of the comparator is an alignment similar to that
shown in (3), but with inclusion of word-boundary markers. Deletions are rep-
resented as a stimulus element aligned with a dash in the response and insertions
are represented as a response element aligned with a dash in the stimulus. Align-
ments were stored on the computer as text files so that their characteristics could
be analyzed further. The comparator also produces a data file containing descrip-
tive information for each sentence: the number of phonemes in the stimulus and
the response, the number of phonemes correct, the number of insertions, the
number of deletions, and the overall visual distance between the stimulus and
the response.

Occasionally, the comparator produced more than one alignment with the
same (minimum) overall visual distance. Although alternate alignments were
often trivially different, resulting in identical values for performance measures,
stimulus-response pairs that produced more than two alternate alignments were
excluded. Of the 13,900 sentences analyzed, 632 (4.5%) had more than two
alternate alignments and thus were not analyzed. When two alternate alignments
were produced, one was selected randomly.

Examination of Alignments

Computer software was developed (Bernstein et al., 1991) that allows the user
to search for pre-specified stimulus-response alignment patterns in the database
and to tabulate the number of occurrences of each pattern. With this software
it is possible to generate stimulus-response confusion matrices for selected sen-
tences, words, phonemes, or sets of phonemes.

Scoring Methods

Sentences correct. Each sentence was scored in a dichotomous manner as
correct (1) or incorrect (0). To be considered correct, all phonemes in the sen-
tence had to be correct.

Words correct. A computer program was written to count the number of
words correct in each sentence. All words were included in scoring, not just
key words. No credit was given for responses that were homophones of the
correct words.

Phonemes correct. The number of phonemes correct was tabulated by the
sequence comparator. If the subject gave no response to a particular sentence,
the comparator did not provide an alignment, but the number of phonemes correct
was set to zero.

Visual distance. Each stimulus-response alignment produced by the com-
parator has associated with it a value for the overall visual distance between the
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stimulus and the response. Visual distance is the sum of the values in the distance
matrix corresponding to each pair of elements in the alignment. Correct
phonemes have a distance of zero, visually similar phonemes have small dis-
tances, and visually dissimilar phonemes have large distances. For example,
/p/ and /m/ have a visual distance of 1, whereas /g/ and /w/ have a distance of
33. Deletions and insertions are assigned a value of 8. The alignment in (3)
produces a total visual distance of 141. Although the sequence comparator pro-
vides no data when the subject gives no response, non-responses were assigned
a value for visual distance equivalent to deletion of all stimulus phonemes (i.e.,
8 X the number of stimulus phonemes).

Visual distance between the stimulus and response may be a useful measure
of performance because it is a composite that reflects not only the correct re-
sponses made by the subject, but also the nature of the errors that are made.
As noted above, errors that are visually similar to the stimulus yield small values
for visual distance, whereas errors that are very different from the stimulus yield
large values. Moreover, when the response bears virtually no visual similarity
to the stimulus, the alignment consists of a great many deletions and insertions.
Subjects with equal numbers of errors in terms of words and phonemes may
differ considerably in the seriousness of their errors.

RESULTS AND DISCUSSION
Illustration: Sentence Histogram

The first type of descriptive analysis to be performed was a tabulation of the
percentage correct responses for each stimulus phoneme within each of the 100
CID Everyday Sentences, based on the data for all 139 subjects. Graphs repre-
senting these data are referred to as sentence histograms.

To illustrate, Figure 1 is a sentence histogram for CID Sentence 1, Walking’s
my favorite exercise. The characters along the horizontal axis give the DECtalk
transcription of the sentence. Data are shown separately for the male and the
female talker. Sample size was reduced to 122 because 17 subjects gave no
response to this sentence.

Figure | illustrates the potential usefulness of phonemic scoring for examining
the microstructure of performance within a sentence. For example, only 7.2%
of these 122 subjects responded correctly with /wcklG/, yet 75.5% correctly
identified the initial consonant, /w/. This highly visible phoneme was the initial
phoneme in a variety of incorrect word responses such as what, wool, where,
one, and watch. This performance pattern contrasts with the results for the
words /mA/ and /fevrit/, which show a high percentage of whole-word correct
responses and comparatively few additional correct phonemes. For/mA/, 42.6%
of the subjects responded with the correct word and only four additional subjects
(3.3%) got the phoneme /m/ correct. For the word /fevrit/, 30.3% of the subjects
were correct and additional correct phoneme responses ranged from .8% to
13.1%. Comparison of the characteristics of words that tend to be partially
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Figure 1. Sentence histogram of CID Sentence 1 for two talkers. Characters on the
horizontal axis represent the DECtalk transcription of the sentence,
Walking’s my favorite exercise.

correct with those that elicit an all-or-none pattern of performance may provide
insights regarding whole-word versus phonemic-level processing of the visual
stimulus.

Another interesting feature of this histogram is the sharp discontinuity in per-
formance between walking’s and my favorite. Although preceding context can
often constrain possible word choices, in this example the preceding context was
so poorly identified that it provided little useful information for subjects to infer
the topic of the sentence. The sharp rise in the percentage of correct responses
must therefore reflect visual information present in the stimulus that permitted
word identification independently of the preceding context. Such discontinuities
can potentially be used to identify locations within sentences where speechread-
ing is driven primarily by the visual stimulus.

One final characteristic of this sentence that is visible in the histogram is a
difference between the two talkers. Although the female talker is generally more
difficult to speechread than the male (Demorest & Bernstein, in press), for the
words my favorite this difference is reversed. Such token-specific differences
provide a basis for testing hypotheses about the characteristics of the visual
stimulus that might account for the overall difference between the talkers. That
is, characteristics that might explain the generally higher intelligibility of the
male talker should be absent or have different values when he is Jess intelligible.
Because differences between talkers are an important source of variability in
speechreading performance (Demorest & Bernstein, in press), characterization
and explanation of talker differences have both practical and theoretical signifi-
cance.
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Illustration: Response Distributions and Response Uncertainty Function

Sentence histograms provide information about correct responses but they do
not reveal anything about the kinds of errors subjects make. In Figure 2 the
response distribution for each stimulus phoneme is presented as a stacked bar
graph. The graph shows the proportion of responses that were (a) correct, (b)
substitution errors (i.e., phonemic confusions), and (c) deletions. The bottom
portion of each bar corresponds to the combined data for the male and the female
talker shown in Figure 1.

Proportion
1.0 P

r
0.8
0.6 = L
0.4 imtE | sl=iEINinE R
0.2 L g
0.0

Wec k i GsmATft e v r i t E k s R s A z

Correct Response [T substitution [ Deletion

Figure 2. Response distribution for each stimulus phoneme in CID Sentence 1.
Characters on the horizontal axis represent the DECtalk transcription
of the sentence, Walking’s my favorite exercise.

One notable feature of the distributions is that some phonemes elicit incorrect
responses whereas others result in deletions. Consider the difference between
the vowel /c/ in walking and the vowel /R/ in exercise. Incorrect word responses
(see above) resulted in a large number of substitution errors for the first vowel
in the sentence. However, for /R/, which has a higher proportion of correct
responses, deletion is the dominant category of error.

A second way of summarizing the responses is to quantify the amount of
response uncertainty for each stimulus phoneme. Response uncertainty is high
when subjects make many different types of errors and it is low when there is
a high percentage of correct responses and/or when errors are concentrated in a
small number of categories. The uncertainty of a response distribution can be
quantified (in bits) by calculating

k

IR e
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where p; is the proportion of subjects giving response i and i is an index of
summation that represents each of the k = 47 possible responses in turn. For
example, consider the responses to the vowel /c/ in walking. Table 2 shows
the frequencies of the different responses that occurred. The reduced vowel /x/
and deletion were the most common errors, but a variety of other vowel substitu-
tions occurred as well. The value of —p log, p is shown for each response that
occurred and their sum is 2.43 bits. (Although summation is across all 47 pos-
sible responses, those that did not occur have p; = 0, and hence contribute nothing
to the total.) Response uncertainty was calculated in this manner for each stimu-
lus phoneme in CID Sentence 1 and the response uncertainty function given in

Table 2

Response Distribution and Calculation of Response Uncertainty for the Vowel /c/
in CID Sentence 1: Walking's my favorite exercise.

Response
c i I E a B 0 U X A -
sl Al Wl fel fal Il ol ful lal  fai/  Deletion
Frequency 3 2 4 12 7 6 1 2 49 1 35

Proportion(p) .025 .016 .033 .098 .057 .049 .008 .016 .402 .008 .287
—plog, p 131 097 162 329 237 214 057 .097 .529 .057 517

30Fte:sponse Uncertainty (Bits)
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Figure 3. Response uncertainty for each stimulus phoneme in CID
Sentence 1. Response uncertainty (bits) was calculated across
all possible responses as — 3,p; log, p; where p; is the
proportion of subjects giving response i.
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Figure 3 shows how uncertainty varies across the sentence.

For the word walking, the uncertainty function tracks the rise and decline in
substitution errors from the beginning to the end of the word. At the beginning
of the word uncertainty is low because of the high percentage of correct re-
sponses, whereas at the end of the word it is low because of the high percentage
of deletions. For the phonemes of the final word, exercise, the percentage of
correct responses is relatively constant, but uncertainty increases as the number
and diversity of substitution errors increases.

The response uncertainty function provides another approach to describing
performance on speechread sentences. When response uncertainty is low, it
reflects unanimity among subjects and it is hypothesized that such unanimity
reveals the operation of stimulus-driven and/or linguistic processes. When re-
sponse uncertainty is high, subjects are making many different responses and
the disparity among subjects may be attributable to idiosyncratic speechreading
strategies or to other processes such as guessing. Thus systematic study of con-
texts with high and low response uncertainty may suggest additional hypotheses
about sentence processing.

Comparison of the overall shape of response uncertainty functions from one
sentence to the next is also potentially informative. For example, if speechread-
ing were a “left-to-right” phenomenon with previous context increasingly deter-
mining responding, response uncertainty functions should generally fall from
the beginning to the end of a sentence. Or, if sentences were processed in
smaller units, such as phrases or clauses, the function might show discontinuities
between such units. In contrast, if speechreading were exclusively determined
by identification of individual phonemes, the response uncertainty function
would simply track the visibility of individual phonemes.

Description of Subjects’ Performance

Sentence histograms and response distributions are a method of describing
normative performance on different materials. However, performance measures
derived from the sequence comparator also provide information about individual
differences among speechreaders. In this section two measures from the se-
quence comparator, phonemes correct and overall visual distance between the
stimulus and response, are compared to two measures that can be obtained from
conventional methods of scoring: sentences correct and words correct.

Table 3 gives descriptive statistics for the four scoring methods based on the
104 subjects reported by Demorest and Bemnstein (in press). Average perfor-
mance, expressed as a percentage of the maximum possible score, was 9.71%
sentences correct, 20.8% words correct, and 24.9% phonemes correct. The
visual distance score, which has no maximum possible value, is expressed in
arbitrary units that were derived from the distance matrix used by the sequence
comparator. If we divide visual distance by 2,124, the number of stimulus
phonemes, the resulting value is 7.69. For comparison, note that the response
in Example 1, with a total visual distance of 141 and 26 stimulus phonemes,
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Table 3

Descriptive Statistics for Four Methods of Scoring Performance
on the 100 CID Everyday Sentences

Number of Total Total Total
Sentences Words Phonemes Visual
Correct Correct Correct Distance
Mean 9.71 155.46 528.32 16336.16
SD 6.12 73.67 219.96 2601.97
Skewness 1.14 1.06 0.76 —-0.02
Minimum 0 1 2 8489
Maximum k1! 402 1181 25572

Note. The maximum possible words correct was 749; the maximum possible phonemes correct
was 2,124.

results in an index of 5.42, a value better than the average level of performance.

The minimum and maximum scores indicate a wide range of performance for
individual subjects. One subject gave only two responses, despite instructions
to guess, and obtained only one word and two phonemes correct. The best
performers, on the other hand, obtained 31.0% of the sentences correct, 53.7%
words correct, and 55.6% phonemes correct. The increases in performance level
across the three methods of scoring reflect the additional credit given for partially
correct responses.

The methods of scoring that count correct responses all yield score distribu-
tions that are significantly positively skewed. The degree of skewness may be
interpreted as moderate-to-severe. These measures result in many low scores
but they are especially sensitive to individual differences at the upper end of the
score distribution. The visual distance measure, however, is not skewed, so it
is equally sensitive to individual differences throughout the performance range.
This result is a reasonable one, given that visual distance provides information
about differences in the seriousness of the errors that subjects make and hence
provides additional information about those who make few correct responses.

Estimated test reliability. 1If the four performance measures are considered
four methods of scoring a speechreading test, it is of interest to know whether
test reliability is affected by the scoring method selected. Demorest and Bern-
stein (in press) have presented theoretical functions for test-score reliability, as
a function of test length, for the words-correct scores summarized in Table 3.
Model [ in their graph is equivalent to a plot of coefficient alpha (internal con-
sistency reliability). For purposes of comparison, Figure 4 shows this function
for each of the scoring methods in Table 3.

Although sentences-correct scoring produces less reliable scores than the other
three methods, there is little difference among words correct, phonemes correct,
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Figure 4. Internal consistency reliability as a function of test length (number of sentences)
for four methods of scoring speechreading. The function for words correct is from
Model 1, “Sources of variability in speechreading sentences: A generalizability
analysis” by M.E. Demorest and L.E. Bernstein, in press, Journal of
Speech and Hearing Research. Adapted by permission.

and visual distance. The poorer reliability of the sentence scores probably re-
flects the smaller number of items upon which they are based. That is, for 100
sentences, the words-correct score is based on 749 words and the phonemes-cor-
rect score is based on 2,124 phonemes.

Correlations among the four scoring methods. As with any set of alternate
scoring methods, it is important to know whether the resulting scores are highly
correlated. As shown in Table 4, the magnitude of the correlations is very high,
which implies that the four methods tend to rank subjects similarly with regard
to speechreading performance. The negative signs on the correlations with visual
distance reflect the fact that high visual distance represents poor performance,

Table 4

Correlations Among Four Methods of Scoring Speechread Sentences

Words Phonemes Visual

Correct Correct Distance
Sentences Correct 931 .882 —.854
Words Correct 984 —.886
Phonemes Correct —-.877

Note. All correlations are significant, p < .0005.
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whereas low visual distance indicates good performance. Because the magnitude
of the correlations in Table 4 approaches that of reliability coefficients, any one
of the scoring methods could probably be used as a global measure of a subject’s
performance on a test of speechreading sentences.

Correlations among adjusted measures of performance. The conclusion just
stated is a psychometric one. It refers to the equivalence of the various scoring
methods for describing individual differences using a single measure of perfor-
mance. However, if we view speechreading as consisting of several interrelated
tasks, such as phoneme, word, and sentence identification, it is of interest to
know whether performance on these tasks is correlated. The correlations in
Table 4 do not directly address this question because they are similar to part-
whole correlations. Correct sentences contain correct words and correct words
contain correct phonemes. In order to estimate the degree of correlation among
sentence identification, word identification, and phoneme identification, per se,
it is necessary to adjust these measures for the overlap that exists among them.

The correlation between sentences correct and words correct can be estimated
if the words-correct score is expressed as a percentage (or proportion) of the
words in incorrect sentences. This procedure eliminates the overlap that occurs
when the words in correct sentences are included in the words-correct score.
Similarly, the correlation of sentences correct and phonemes correct can be es-
timated by calculating phonemes correct as a percentage of the phonemes in
incorrect sentences. Finally, the correlation between words correct and
phonemes correct can be estimated by calculating phonemes correct as a percen-
tage of the phonemes in incorrect words.

New, adjusted measures were obtained using the computer program that
examines alignments and tabulates user-specified patterns. When words and
phonemes correct were calculated using only incorrect sentences, their correla-
tions with sentences correct were r = .856 and .766, respectively (p < .0005).
Although elimination of the overlap with correct sentences reduced the correla-
tions, the adjusted correlations are still quite high. Subjects who correctly iden-
tified words and phonemes in partially correct sentences were also, to a great
degree, the subjects who were correct on a relatively large number of whole
sentences.

When phonemes correct was calculated using only incorrect words, the corre-
lation with words correct dropped to r = .625 (p < .0005). Although this corre-
lation is high enough to suggest that word identification and phoneme identifica-
tion are related processes, they are by no means equivalent. Interestingly, the
correlation between this adjusted phonemes-correct score and sentences correct
was only .444. Thus the number of whole sentences a subject had correct was
not well predicted by phonemes correct in incorrect words.

Visual distance as a composite measure. The adjustment procedure applied
to the measures of correct performance cannot be used with the visual distance
measure because it is inherently a composite measure. It is sensitive to correct
sentences (which have a visual distance of zero), and to correct words and pho-
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nemes, both of which contribute zeroes to visual distance. The more correct
responses a subject makes, the lower visual distance is likely to be. This implies
that after correct responding is taken into account, the remaining variance in the
visual distance measure reflects the nature of the errors that were made. As
noted above, this information tends to reveal individual differences among those
whose overall performance is at the lower end of the performance range.

To describe the magnitude of this residual variance in the present database,
the three measures of correct performance (i.e., sentences correct, words correct,
and phonemes correct) were used as predictors in a multiple regression analysis
with visual distance as the dependent variable. No adjustment was made for
overlap among the measures because regression analysis adjusts for linear associ-
ation among the predictors. Together the three predictors resulted in a multiple
correlation of R = .948 (p < .0005), which accounts for 89.9% of the variance
in the visual distance measure. The remaining 10.1% variance reflects individual
differences in the kinds of errors subjects made.

CONCLUSION

This article has illustrated the application and potential usefulness of a compu-
tational approach to the study of speechreading. Sentence histograms, response
distributions, and uncertainty functions are examples of the kinds of detailed
description that can be derived for speechread sentences and that can generate
hypotheses about the perceptual and cognitive processes that underlie perfor-
mance. They represent a normative approach, which emphasizes general pat-
terns for a group of observers. However, as the examples that were presented
demonstrate, it is also informative to compare those parts of sentences where
subjects tend to make the same kinds of errors with those where more idiosyn-
cratic errors occur.

Comparisons among the various methods of scoring speechreading and de-
scribing the performance of subjects have shown how examination of individual
differences can also provide valuable information for modeling speechreading.
The degree of correlation among scores that represent different levels of linguistic
analysis, for example, can help in identifying the component skills that comprise
speechreading.

Although the database presented here consists of isolated sentences, the indi-
vidual-differences approach can be applied to the broad question of what makes
someone a relatively successful or unsuccessful speechreader. To answer that
question, additional measures of performance on sentences are being developed
and other types of materials are being explored (e.g., syllables, isolated words,
topic-related sentences, and connected discourse).

A final note is that the computational techniques for studying speechreading,
which have been illustrated here with data from normal-hearing subjects, can
also be applied to the responses of hearing-impaired speechreaders and can be
used for clinical as well as research purposes. With appropriate adjustments in
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the sequence comparator, they could also be used to describe auditory or audio-
visual speech perception.
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