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Generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972) pro-
vides an integrated framework for evaluating sources of variability in test scores.
Two examples of its application to testing speech perception are reviewed: a
study of NU-6 word lists (Demorest & Cord, 1993) and an experiment on the
Speech Perception in Noise test (Bilger, Nuetzel, Rabinowitz, & Rzeczkowski,
1984). Generalizability coefficients (which are analogous to reliability coeffi-
cients) are derived from the data of Demorest and Cord (1993) and the impact
of different types of test score interpretation on generalizability are outlined.
The relation between test length and generalizability is illustrated with speech-
reading data from Demorest and Bernstein (1992). Results of generalizability
analyses can be used to design more reliable and efficient test procedures.

Assessment of individual differences in speech perception requires standardized
tests that are sensitive to relevant sources of variability in test scores and insen-
sitive to irrelevant, extraneous sources of variability. The former characteristic
is considered evidence of test validity, whereas the latter is concerned with relia-
bility. Because reliability is necessary, but not sufficient, for validity, investi-
gation of unwanted sources of variability in test scores is critical in the develop-
ment and evaluation of psychometrically sound measures. Without estimates of
reliability and its counterpart, measurement error, one cannot know whether
differences in scores obtained under different testing conditions (e.g., aided vs.
unaided) or at different times (e.g., before and after training) are truly different,
or whether observed differences are just a byproduct of random test-score vari-
ability.

Reliability has traditionally been evaluated by examining extraneous sources
of variability independently of one another. For example, retest reliability eval-
uates the consistency of test scores over time, with test occasion being the ex-
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traneous variable. Alfernate-form reliability evaluates the consistency of scores
over different test forms, with test form being the extraneous variable. Split-half
reliability and internal consistency reliability evaluate consistency of perfor-
mance over items within a single test form, and interscorer reliability reflects
consistency across scorers.

GENERALIZABILITY THEORY

Generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972) is
a statistical theory of sources of variability in behavioral observations that per-
mits estimation of the effects of several extraneous variables, and their interac-
tions, within a single experiment. A generalizability study is an experiment in
which potential sources of variability in test scores are manipulated. A statistical
model for a single observation and an analysis-of-variance model appropriate
for the experimental design are specified. Next, expected values of the mean
squares from the analysis of variance are determined and used to estimate the
variance component for each source of variability in the observations.

Generalizability of NU-6 Word-Recognition Scores

As an example, consider a study conducted by Demorest and Cord (1993)
in which four monosyllabic word lists (Auditec recordings of NU-6) were ad-
ministered on each of 2 days to a sample of 40 hearing-impaired adults. Sub-
jects were recruited from the Aural Rehabilitation Program at Walter Reed
Army Medical Center and typically had mild-to-moderate bilateral sen-
sorineural hearing loss. The sources of variability were the test list and the
test occasion. The statistical model for the score of one subject on a given list
on a given day is:

X=pt+ta to,+a;+ay,+as+agt e, n

where . is a grand mean, the a parameters represent the effects of Subject
(o), List (a;), Day (a3), List X Day (o), Subject X List (a5), and Subject
X Day (o), respectively, and e is random, residual error. Given this model
for a single score, the variance of observed scores is:

0i=0%+0§+0§+0§+0§+0§+0i, 2)

where the subscripts on the variances correspond to those of the alpha-parameter
and error effects in Equation 1. The goal of generalizability analysis is to
estimate each of these variance components and their contribution to the total
observed variance. Of the seven variance components in Equation 2, only the
first, that for subject (0,2), produces relevant variance; all other sources are
extraneous to the purposes of testing. Thus, ideally, all other variance compo-
nents should be zero. For example, if there were no differences among lists,
the variance component for lists (07,%) would be zero. Similarly, if subjects’
mean performance was the same from one occasion to the next, there would be
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no variance attributable to the day of testing (g;> = 0). Because these extrane-
ous effects on test scores are typically not zero, it is important to estimate their
magnitude and to determine their impact on test score interpretation.

The sources of variability in the experiment by Demorest and Cord (1993)
are shown in Table 1. The mean squares symbolized in the third column of the
table would be used in an analysis of variance to form F ratios for testing whether
the first six sources of variability were statistically significant (i.e., non-zero).'
The expected value of each mean square in an analysis of variance (i.e., the
quantity that the mean square estimates) is a weighted sum of the variance com-
ponents. For example, the expected value of the mean square for the interaction
of Subject X Day, MS,, is 404> + a.%, whereas the expected value of the
mean square for residual error, MSg, is o,2. The mean square for subject,
MS,, estimates not only the individual differences among subjects, but also
variance attributable to the interaction of Subject X Day.?

Table 1
Analysis of Variance Table With Expected Values of Mean Squares

Source df MSs Expected value of MS
1. Subject (S) 39 MS, 80,2 + 404> + 02
2. List(L) 3 MS, 800,> + 400,2 + 2042 + ©o,°
3. Day (D) 1 MS, 1600,% + 404® + o2
4. LxD 3 MS, 400, + 0.2
5.8xL 17 MS, 205> + 02
6. S XD 39 MSg 4042 + 02
7. Error 117 MSg .’

Total 319

Note. Subject and day are random effects, list is a fixed effect, and the interaction of Subject X
List X Day is assumed to be zero.

The next step in the analysis is to obtain estimates of the variance components
in Equation 2. By equating each mean square to its expected value, estimates
of the variance components can be obtained. For example, (MSs — MSg)/4
provides an estimate of 04>, and (MS, — MS, — MSs + MSg)/80 gives an

'In this design, both Subject and Day are considered random effects. List is a fixed effect, and
the interaction of Subject X List X Day is assumed to be zero. Given this model, some effects
must be tested using a quasi F ratio (F ') (Winer, 1971).

2The weights that appear with the variance components reflect the numbers of observations con-
tributing to each mean upon which the mean square is based. For example, the Subject X Day
interaction is based on 80 means (40 subjects X 2 days), and each of these means is computed
across four lists.
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Table 2

Estimation of Population Variance Components

Fixed-effect
Source Estimator correction
1. Subject(S)  (MS, — MS,)/8 1
2. List(L) (MS, — MS, — MSs + MSg)/80 3/4
3. Day (D) (MS, — MS¢)/160 1
4. LxD (MS, — MSg)/40 34
5.SxL (MS; — MSg)/2 3/4
6. SxD (MSs — MSg)/4 |
7. Error MSg 1

Note. Subject and day are random effects, list is a fixed effect, and the interaction of Sub-
ject x List X Day is assumed to be zero.

estimate of o,?. An algorithm for deriving the expected values of mean squares
in analysis of variance is given in Winer (1971). One additional computational
adjustment must be made for those sources of variability that involve fixed ef-
fects. If a fixed effect has k levels, each component involving that effect must
be multiplied by (k — 1)/k. The formulas in Table 2 were generated following
these principles.

Results from analysis of the Demorest and Cord (1993) data are shown in
Table 3. Inspection of the F ratios suggests statistically significant effects for
subject and list. Subject is the largest source of variability, accounting for an
estimated 81.1% of the total variance of observed scores. The list effect, al-
though non-zero, contributes very little to the variance of observed scores. This
illustrates an important point: The magnitude of an effect cannot be directly
inferred from statistical significance. Statistical power is high when effects are
estimated from a large number of observations (e¢.g., 80 observations per list),
yet the magnitude of the effect may be extremely small and of no practical sig-
nificance. Effects for day and the interaction of List X Day produce negative
variance estimates,> which have been set to zero. The Subject X List interaction
is not statistically significant (p > .05), which implies that the differences
among lists are the same from one subject to the next. The Subject X Day
interaction is larger and is significant both statistically (p < .01) and clinically.
Day-to-day variability in scores differs somewhat from one subject to the next
(or equivalently, the individual differences among subjects differ somewhat from
one day to the next). This effect accounts for an estimated 6.8% of the total
variance. Residual error variance, the final component, accounts for 9.5% of

3Negative variance estimates occur when larger mean squares are subtracted from smaller ones
(see formulas in Table 2).
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Table 3

Estimates of Population Variance Components for NU-6 Word Recognition

Mean For Variance Proportion of
Source square F’ estimate total variance
1. Subject (S) 484 81 18.58 57.34 .811
2. List(L) 37.91 8.72 0.32 .005
3. Day (D) 13.61 0.52 0? 0?
4. L xD 0.31 0.05 0? 0?
5.8xL 10.77 1.60 1.52 .021
6. S XD 26.09 3.88 4.84 .068
7. Ermor 6.73 6.73
Total 70.74

Note. Data are from Evaluation of Temporal and Interlist Sources of Variability in NU-6 Test
Scores: A Generalizability Analysis by M.E. Demorest and M. Cord, 1993, Manuscript in prepara-
tion. Reprinted by permission. Subject and Day are random effects; List is a fixed effect; and the
interaction of Subject X List X Day is assumed to be zero.

*This variance estimate was negative and was set equal to zero.

the variance.
Based on the results in Table 3, total variance of observed scores in this ex-
periment is estimated as follows:

6; = 61 + 63 + 65 + 65 + 635 + 63 + 6L, 3)
70.74 = 57.34 + 0.32 + 0 + 0 + 1.52 + 4.84 + 6.73. )

From these estimates, it is possible to derive theoretical predictions about the
reliability (or generalizability) of scores on these NU-6 word lists under a variety
of clinical testing protocols (see Generalizability Coefficients below).

Generalizability of Scores on the Speech Perception in Noise (SPIN) Test

Bilger, Nuetzel, Rabinowitz, and Rzeczkowski (1984) performed a generaliza-
bility analysis of the Speech Perception in Noise (SPIN) test in which several
variables were manipulated. A sample of 128 hearing-impaired adults responded
to the 10 forms of the test, each of which contained high- and low-context items.
Half the subjects were tested through headphones, half with loudspeakers. Half
were tested in a single session, half in two sessions 2-4 weeks apart. In addition,
there were two methods of recording responses: immediate write-down by the
examiner (Marker 1) versus transcription by an independent observer from a
recording of the subject’s response (Marker 2). There were also eight orders of
testing used.

Because of the large number of subjects in their study, the large number of
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test forms, and the multiple conditions of testing/scoring, Bilger et al. (1984)
found that many irrelevant sources of variability were statistically significant
(i.e., non-zero). Their variance component analysis, however, revealed that the
magnitude of many of these effects was trivial. They concluded that “SPIN
scores were not influenced in an important way by the choice of transducer, the
number of visits required to complete testing, or the order in which the forms
were administered” (p. 36). In contrast, relatively large interactions were ob-
tained for Subject X Context, Subject X Form, and Subject X Context X
Form. This led Bilger et al. to conclude that the high- and low-context items
produced two different types of speech test and that they should be scored, and
evaluated, separately. Accordingly, they specified a simplified model for each
context containing three independent variables (subject, form, and marker) and
their interactions. Subject was considered a random effect, and form and marker
were considered fixed effects. Results obtained with these models are shown
in Tables 4 and 5.* For both contexts, Subject was the largest source of variance,

Table 4
Estimation of Population Variance Components: SPIN High-Context Sentences

Mean Variance Proportion of

Source square F estimate total variance
1. Subject (S) 446.34 6468.03 22.31 .902
2. Form(F) 71.26 15.03 0.23 .010
3. Marker (M) 5.25 42.33 0.00 .000
4. S XF 4.74 68.73 2.10 .085
5. SxM 0.12 1.80 0.00 .000
6. FxXM 0.12 1.81 0.00 .000
7. Error 0.07 0.07 .003

Total 24.72

Note. Adapted from “Standardization of a Test of Speech Perception in Noise” by R.C. Bilger,
J.M. Nuetzel, W.M. Rabinowitz, and C. Rzeczkowski, 1984, Journal of Speech and Hearing Re-
search, 27, p. 39. Copyright 1984 by the American Speech-Language-Hearing Association.
Adapted by permission. Subject is a random effect, all other effects are fixed, and the interaction
of Subject X Form X Marker is assumed to be zero.

accounting for 90.2% and 81.7% of the total variance for high- and low-context
sentences respectively. The main effect of test form and the Subject X Form
interaction were statistically significant for both contexts. For high-context sen-
tences the differences among forms were negligible, but there was a non-trivial
interaction of Subject X Form, indicating that the form differences were not the

“For unknown reasons, variance estimates for the Subject X Form interaction differ slightly from
those reported by Bilger et al. (1984).
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Table 5
Estimation of Population Variance Components: SPIN Low-Context Sentences

Mean Variance Proportion of

Source square F estimate total variance
1. Subject (S) 561.25 4165.63 28.06 .817
2. Form (F) 494.20 49.37 1.70 .050
3. Marker (M) 1.62 14.13 0.00 .000
4. SXF 10.01 74.30 4.44 129
58S XM 0.11 0.85 0.00 .000
6. F XM 0.09 0.64 0.00 .000
7. Error 0.13 0.13 .004

Total 34.34

Note. Adapted from “Standardization of a Test of Speech Perception in Noise” by R.C. Bilger,
J.M. Nuetzel, W.M. Rabinowitz, and C. Rzeczkowski, 1984, Journal of Speech and Hearing Re-
search, 27, p. 39. Copyright [984 by the American Speech-Language-Hearing Association.
Adapted by permission. Subject is a random effect, all other effects are fixed, and the interaction
of Subject X Form X Marker is assumed to be zero.

same from one subject to the next (or equivalently, the individual differences
among subjects were not quite the same from one form to the next). These
effects were even larger for the low-context sentences, and this led Bilger et al.
to recommend reorganization of the SPIN items into new forms that would be
more nearly equivalent (see Bilger, 1984). Of particular importance was the
finding that, despite their statistical significance, differences between the two
markers/methods of scoring were virtually zero, and this factor did not interact
with subject or form. Thus, in clinical application, the two scoring methods
could be used interchangeably.

GENERALIZABILITY COEFFICIENTS

Generalizability analysis yields coefficients of generalizability which are
analogous to reliability coefficients. Each coefficient is based on a data collec-
tion model for obtaining test scores and a universe of generalization for test
score interpretation. Together these determine which sources of variability affect
observed scores and universe scores. (The latter are analogous to true scores in
classical test theory.) The coefficient equals the ratio of universe-score variance
to observed-score variance:

2
2 Ouniverse

p= o'gbscrvcd ’ (5)
For example, consider a data collection model in which a single NU-6 word

list is presented to a subject on a given day. All subjects are tested with the



46 JARA XXVI  39-50 1993

same list. The variance of the observed scores in the population would be:
2 _ 2 2 2 2
Oobserved — 05 + 05 + O5xp + O (6)

That is, variance of the observed scores is influenced not only by individual
differences among subjects (052), but also by interactions of Subject X List
(0sx>) and Subject X Day (0gp>), and residual error (o,2).

Different universes of generalization result in different formulas for the
numerator of Equation 6. One possibility is to define the universe score as the
subject’s expected score across all lists and across days. When universe scores
are defined in this way, the formula for universe-score variance is:

2 - 2
Ouniverse = Us- (7)
Another way to define the universe score is: the subject’s expected score
across lists on the day of testing. Thus there is generalization across lists, but
the score is interpreted as specific to that day. The formula for universe-score

variance becomes:

2 — 2 2
Tuniverse = O + OsxD- (8)

The variance of universe scores contains two components: one for subjects (ir-
respective of the day of testing) and one for the interaction of Subject X Day.
A universe score that is specific to a particular day contains not only the main
effect of subject, but also the interaction of Subject X Day.

A third way to define the universe score is: the subject’s expected score on
this list across days. The test score is interpreted as specific to a given list, but
there is generalization across days. A universe score that is specific to a particu-
lar list contains not only the main effect of subject but also the interaction of
Subject X List. The formula for universe-score variance is analogous to Equa-
tion 8, but contains a component for the interaction of Subject X List rather
than Subject X Day:

0ﬁniverse = 0'§ + ngL- (9)

It is, of course, possible to define the universe score without generalizing
across either lists or days. The test score is then interpreted as specific to a
given list and to the day of testing, and the universe score contains the effect of
subject, as well as the interactions of Subject X Day and Subject X List. Uni-
verse-score variance for this definition is given by:

Timiverse = 05 + O5x1 + G5 xp- (10)
Comparison of Equations 7-10 shows clearly that the generalizability coefficient
will be highest when test score interpretation is restricted to the same test list
and test day and lowest when generalization is across both lists and days. This
result occurs because testing was conducted on a single day with a single list.
Generalizing beyond the conditions of test administration is less accurate than
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restricting test score interpretation to the conditions under which the scores were
obtained.

Generalizability coefficients estimated from the data of Demorest and Cord
(1993) are shown in Table 6 for the four universes of generalization represented
in Equations 7-10. Although the expected differences among the coefficients
are obtained, all of the generalizability coefficients are relatively high. This
indicates that the NU-6 scores for these lists in this client population are sensitive
to individual differences in word recognition and relatively insensitive to extrane-
ous variables such as list and day of testing. The generalizability coefficients
could be raised even further if testing were conducted on more than one day or
with more than one list.

Table 6

Generalizability Coefficients and Mean Reliability Coefficients
for NU-6 Words Under Four Universes of Generalization

Mean
Generalizability reliability
Universe of generalization coefficient coefficient
Across lists and days 814 .808
Across lists for a given day .883 .877
Across days for a given list .836 832

A given list on a given day 904

Note. Data are from Evaluation of Temporal and Interlist Sources of Variability in NU-6 Test
Scores: A Generalizability Analysis by M.E. Demorest and M. Cord, 1993, Manuscript in prepara-
tion. Reprinted by permission.

As noted in the introduction, it has been customary to estimate test reliability
by calculating correlation coefficients for scores obtained under various test con-
ditions. Generalizability coefficients for the first three universes of generaliza-
tion in Table 6 are conceptually and theoretically equivalent to delayed alternate-
form, alternate-form, and retest reliability coefficients, respectively. Mean
values for these coefficients from Demorest and Cord (1993) are also shown in
Table 6 and it is apparent that the agreement is quite good. However, generaliza-
bility theory also makes it possible to estimate immediate retest reliability (same
list, same day), even though no immediate retests were given.

GENERALIZABILITY AND TEST LENGTH

Generalizability theory is especially useful for estimating the number of test
items needed to achieve a particular level of generalizability. As a general rule,
when test lists or forms are lengthened by a factor of k, variance components
that involve test lists are divided by k. A generalizability function can be gen-
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erated by substituting various values of k and determining the estimated gener-
alizability. For example, Demorest and Bernstein (1992) performed a general-
izability analysis on speechreading data from 104 subjects with normal hearing
who viewed 100 video-recorded CID Everyday Sentences (Davis & Silverman,
1970), 50 for each of two talkers. The dependent variable was the total number
of words correct on a single sentence. Generalizability coefficients were esti-
mated for five models of data collection and generalization, three of which were
defined as follows:

Model 1: Test with a single talker, generalize over all test items by this
talker.

Model 2: Test with a single talker, but generalize over all test items
and both talkers.

Model 3: Test some subjects with one talker, others with the other
talker; generalize over all test items and both talkers.

As can be seen in Figure 1 (adapted from Demorest & Bernstein, 1992), all
three functions begin to plateau at about 30-40 items, suggesting that for these
recordings of the CID sentences (Bernstein & Eberhardt, 1986) individual differ-
ences among subjects with normal hearing can be estimated with about 40 sen-
tences. Generalizability is highest for Model | and worst for Model 3. As with
the examples in Table 6 from Demorest and Cord (1993), generalizability is
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Figure 1. Generalizability as a function of test length (number of items) for three models
of data collection and interpretation. Adapted from “Sources of Variability in Speech-
reading Sentences: A Generalizability Analysis” by M.E. Demorest and L.E. Bernstein,
1992, Journal of Speech and Hearing Research, 35, p. 882. Copyright 1992
by the American Speech-Language-Hearing Association.
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most accurate when test score interpretation coincides with the conditions of
testing. If a single talker is used for testing, it is better to restrict test interpre-
tation (i.e., generalization) to that talker (Model 1 vs. Model 2). Moreover, it
is better to have constant test conditions for all subjects. Testing different sub-
jects with different talkers (Model 3) produces much greater variability in ob-
served scores and lowers generalizability even further. Yet this model corre-
sponds to what occurs clinically when different recordings are used by different
clinics or when live-voice testing is done.

CONCLUSION

Generalizability theory provides an integrated framework for evaluating mul-
tiple sources of variability in behavioral observations and for deriving implica-
tions for test development and test score interpretation. Issues of test length,
interlist equivalence, temporal variability, stimulus presentation conditions, scor-
ing methods, and talker effects can all be examined within a comprehensive
model of measurement error. After significant sources of variability have been
identified, steps can be taken to control and/or estimate their effects. Testing
protocols used for individual clients or for program evaluation can be designed
with these goals in mind. For example, it is clear that relatively minor changes
in testing procedures, such as the use of standardized, recorded materials, can
have a significant impact on test score variability and generalizability. At the
same time, it is also important to know which potential sources of variability
do not have large effects, because this justifies flexibility in test administration
procedures and test score interpretation. Generalizability theory has only re-
cently begun to be applied in the domain of speech perception, but, as illustrated
above, it can provide valuable insights about the magnitude of the impact of
extraneous variables on measurement of individual differences. This knowledge
can be used to improve the reliability, validity, and efficiency of testing, issues
that are critical in the current climate of concern with the cost and effectiveness
of clinical services.
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